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ABSTRACT

Suppose that we are given a picture having approxi-
mately piecewise constant gray level. Each point P has a
largest neighborhood N(P) that is entirely contained in
one of the constant regions, and the set of maximal N(P)'s
(i.e., N(P)'s not contained in other N(P)'s) constitutes an
economical description of the picture, generalizing the
Blum "skeleton" or medial axis transformation. The picture
can be smoothed, without excessive blurring, by averaging
over each N(P). By taking differences between pairs of
touching maximal N(p)'s, the edges between the regions can
be detected; since this edge detection scheme is not based
on symmetrical detection operators, it is not handicapped
when two adjacent regions differ greatly in size.

The support of the Directorate of Mathematical and Informa-
tion Sciences, U. S. Air Force Office of Scientific Re-
search, under Contract F44620-72C-0062, is gratefully
acknowledged, as is the help of Mrs. Shelly Rowe in prepar-
ing this paper.
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3 Introduction

This paper develops a general method of constructing
piecewise approximations to a picture. The picture is
assumed to be composed of a set of regions, each having
approximately constant gray level (possibly noisy). Some
examples of such pictures are shown in Figure 1.

The approximations are def%ned by sets of neighbor-
hoods, each of which is contained in one of the regions,
but is not contained in any other such neighborhood. (A
more precise definition is given in Section 3, and the im-
plementation of the method is described in Section 4.) For
brevity, we shall refer to this type of approximation from
now on as a SPAN (for Spatial Piecewise Approximation by
Neighborhoods).

SPANs have several important applications in picture

processing and analysis:

a) The SPAN is a generalization of the Blum [1]
"skeleton" or "medial axis transformation" (MAT).
Previously, the MAT has been defined only for

pictures that are explicitly segmented into

objects and background; see Sections 2-3. Thus

the SPAN, 1ike the MAT, provides a compact repre-
sentation of the given picture. It also provides
a basis for describing the shapes of the regions
that comprise the picture -- e.g., branches on the

SPAN skeleton correspond to lobes on the regions.
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b) In constructing the SPAN, a maximal neighborhood
N(P) of each point P is first found that is con-

g tained in the region to which P belongs. Thus the é

| picture can be smoothed, without blurring the :
edges of the regions, by replacing the gray level
at every point P by the average gray level taken
over N(P). Examples of smoothings obtained in
this way are given in Section 5.

c) At the edges of the regions, pairs of maximal SPAN
neighborhoods -- contained in the regions on the %
two sides of the edge -- will touch. Thus if we

compute the difference between the average gray

levels taken over a pair of such touching neighbor-
hoods, and output this difference at the point

where the neighborhoods touch, we will obtain out-
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lines of the region edges. This method of edge
? detection, unlike most previous methods, is not a
: based on the use of symmetrical edge detection 4
operators; hence it is not handicapped when %
attempting to detect the edge between two regions

that differ greatly in size. Examples of region

edges detected by this approach are shown in

Section 6.

Other approaches to piecewise approximation of pic-
tures have been investigated by Pavliidis and his students
[2-5]. Typically, such approaches begin with an initial
partition of the picture into cells, and modify the parti-
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tion by merging and splitting cells, and adjusting cell
boundaries, while insuring that a given approximation
criterion remains satisfied on each piece of the partition.
These approaches too can be used to smooth the picture with-
out blurring the region edges, and to detect these edges.
But the SPAN approach provides an alternative which is of

potential interest for several reasons:

1) By constructing an approximation to the picture
out of neighborhoods, the SPAN provides a basis
for obtaining structural descriptions of the re-
gions in the picture, similar to those provided
by the MAT, but applicable directly to unsegment-
ed, noisy pictures.

2) The SPAN is constructed by a "parallel" order-
independent process of neighborhood growing and
nonmaximum suppression. This process could be
implemented very efficiently on a parallel array-
processing computer.

3) Because of the simplicity of the operations used
to construct the SPAN, it can be regarded as a
possible computational model for visual perception

of region shapes in piecewise constant scenes.
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2. The medial axis transformation (MAT)

Over ten years ago, Blum [1] proposed a method of
representing a shape S in terms of the set of maximal disks
that are contained in S. Specifically, for each point (x,y)
in S, let N (x,y) be a disk (i.e., a circular neighborhcod)
of radius r centered at (x,y). For small values of r,
Nr(x,y) will be entirely contained in S (if (x,y) is on the
border of S, this will only be true for r=0), but for
larger r's it will extend outside S. Let N(x,y) be the
largest disk centered at (x,y) that is entirely contained
in S. We call N(x,y) maximal if it is not contained in any
other N(u,v). It is easily seen that the union of the
maximal disks N(x,y) is exactly S. [Indeed, each N(x,y) is
contained in S; but every point of S is contained in at
least one of the N(x,y)'s.] Thus the set of centers and
radii of the maximal disks completely determines S. Blum

called this representation of S its medial axis transforma-

tion (MAT). Note that the set of centers of the maximal
disks constitutes a sort of "skeleton" of S.

The "disks" used in the above definition need not be
circular; any family of shapes can be used. When S is an
object in a digital picture, it is more convenient to use
squares rather than circles. A discussion of the digital
MAT, and its use to represent objects in digital pictures,
can be found in [6-7]. A simple example of a digital MAT
is shown in Figure 2.

Blum's definition of the MAT applies only to objects




that have been explicitly extracted from a picture -- or

equivalently, to two-valued pictures, in which we can call
the set of points having one value the "object", and the
remaining points the “"background". The definition is not
directly applicable to pictures in which there are many

gray levels. A generalization to the grayscale case was
given by Levi and Montanari [8], extending earlier work by
Rutovitz [9]. This generalization is based on the relation-
ship between Blum's MAT and the distances from points of S
to the outside of S. Specifically, let N(x,y), the largest
disk centered at (x,y) that is entirely contained in S,

have radius r(x,y). Then r(x,y) is the shortest distance
from (x,y) to the border of S. (In the digital case, if we
use square "“disks", this is still true for a suitably
modified notion of "distance", e. . "city block" or "chess-
board" distance; see [10].) If (x,y) is a point of the

MAT, i.e., the center of one of the maximal disks, it is
easily seen that it is a local maximum of the function
r(x,y), and conversely.

We can now define a "gray-weighted distance”, in a
grayscale picture f, as follows: Let S be any subset of
the picture, and let p be any path (lying inside S) from a
point (x,y) of S to the border of S. We can define a
"gray-weighted length" of p by integrating the gray levels
of f along p; this integral grows rapidly if p passes
through points of high gray level, and slowly if it passes
through low-level points. Note that if f = 1 inside S,
the gray-weighted length becomes the length in the ordinary
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sense. (In the digital case, the integral becomes a dis-
crete sum.) Let us define the gray-weighted distance from
(x,y) to the border of S as the shortest gray-weighted path
length from (x,y) to the border. We can then define the
"gray-weighted MAT" (GMAT) as the set of points of S whose
gray-weighted distances to the border of S are local maxima,
together with their associated distances.

The two-valued MAT is very sensitive to noise, particu-
larly noise that is located near the center of the object
S. This is illustrated in Figure 3, where we see how the
presence of a single noise point at the center of an object
can drasticaliy alter the MAT. The GMAT would be less
sensitive to noise, since the effects of gray level fluctua-
tions on the gray-weighted length of a path should tend to
cancel out. However, the presence of noise should create
many "noisy" local maxima in the GMAT. Also, the GMAT is
defined only when a subset of the given picture has been
specified; it is not defined directly for the picture it-
self.

: In this paper we develop a somewhat different approach
to defining a GMAT for arbitrary grayscale pictures. Our
approach assumes that the picture's gray level is approxi-
mately piecewise constant (except for noise), but does not
require us to specify the region whose GMAT is to be con-
structed, nor to explicitly segment the picture into the
regions. It yields GMATs for all the constant regions

simultaneously, thus providing a representation for the

e
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entire picture. At the same time, it is designed to be

relatively insensitive to noise.
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3. Approximation of piecewise constant pictures using :
maximal neighborhoods: 1The SPAN :

Suppose that we are given a picture whose gray level
is approximately piecewise constant; in other words, the
picture can be partitioned into a set of regions Ri‘ in each
of which the gray level is approximately constant. Some
examples of such pictures were shown in Figure 1. / . .j

Let (x,y) be a point of one of the constant regions R,

B e S

and let Nr(x,y) be the disk of radius r centered at (x,y),
as in Section 2. We would like to find the largest r = r(x,y)
such that Nr(x,y) is entirely contained in R. Our approach

will be to apply some simple statistical tests to the gray

AR e

level population in Nr(x,y), in order to decide whether

Nr(x,y) is contained in a single constant region or overlaps
several of the regions.* 1In designing these tests, we
will assume that the gray level in each of the regions R is
normally distributed (e.g., that R has constant gray level
corrupted by Gaussian noise).

We began by calculating the mean M and standard
deviation O of the gray levels in the neighborhood
Nr(x,y), for each r. Using these, we can compute confidence
intervals around the "true" mean -- i.e., for a given prob-

ability p, we can determine a neighborhood I, of Hp (in

units of °r) such that, with probability p, the mean of the

*A related approach was used in [11] in an attempt to deter-
mine an optimal degree of smoothing to use at each point of
a picture. 1In [123. an analogous method was used to find
natural piecewise constant approximations of one-dimensional
strings of data.
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gray level population of which Nr(x,y) is a sample Tlies

inside I.. If Nr(x,y) lies within a single region R, this

A
2
A

I.. should be small, since Nr(x,y) is a sample of a normally
distributed gray level population. On the other hand, if
Nr(x,y) overlaps more than one region, its gray level dis-

tribution will tend to become multimodal, and the internal

Ir will become larger. Thus we can assume that Nr is con-

tained in R as leng as the length of Ir remains below some

threshold t. (The details will be given in Section 4.)**
For a given choice of confidence p and maximum confi-

dence interval length t,we can thus decide which neighbor-
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hoods Nr(x,y) are contained in a single region R. Let
N(x,y) be the largest such neighborhood, as in Section 2.

We call N(x,y) g-maximal if it dces not overlap any other

TR 7 o ST O N

N(u,v) by fraction q or more of its own area. For example,

if q=1, N(x,y) is gq-maximal if it is not contained in any
% other (larger) N(u,v). The examples in the next section

used q=1, but any q = 0.8 would have given the same results

(s2e the end of Section 4).

We shall call the set of g-maximal neighborhoods the
q-SPAN of the given picture f, and the set of their centers
the "q-skeleton" of f. Note that these depend on the values

of p and t, as well as q. In the next Section we describe

a specific implementation of this definition, for the case

**Another possible approach might have been to use a test
for multimodality to detect that N_(x,y) overlaps more
than one region. Such tests were used by Chow and Kaneko
[13] to determine local thresholds for segmenting a pic- ,
ture. 1




of a digital picture, and give examples of the results

obtained.
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4. Implementation of the SPAN

In the present digital implementation, we used upright
square neighborhoods of sizes 2k+1 by 2k+1 (corresponding
to a chessboard distance measure). Thus the neighborhood
of radius k contains (2k+l)2 points.

Using Student's t distribution, for a given confidence

p, we can find a value tp such that

Uk-u

e e
Sk/(2k+])

< .

I tp} p

-- i.e., such that the absolute difference between the
neighborhood mean My and the population mean u, measured in

units of sk/(2k+1), is less than t_ with probability p.

P
Here we assume that k = 1, and we define Sk to be the

corrected sample standard deviation
iy > ok(2k+l)//(2k+l)2-l

where Oy is the standard deviation of the gray levels in
the neighborhood. We d.vide Sk by 2k+1 to reflect the fact
that the variability of the mean M should decrease with
the square root of the sample size [14].

Thus the p confidence interval about the sample mean

(= the interval within which the true mean lies, with prob-
ability p) is

Ik s (“k'tpsk/(2k+])’ Uk+tp5k/(2k+]))




At each point (x,y), we choose the largest k such that the
length llkl (i.e., 2tpsk/(2k+1)) is less than a given thres-
hold t. This defines the neighborhood N(x,y). If

T, [ =t for k 2 1, we take k=0 as a default option, i.e.,
we define N(x,y) to be (x,y) itself. We then find maximal
N(x,y)'s as described in Section 3.

SPANs were computed for the ten pictures in Figure 1, |
using p = .95, t = ,8 , and q = 1. In these examples, f
only three neighborhood sizes were used: 1x1, 3x3, and 5x5
(i.e., radii of 0, 1, and 2). The radii of the neighbor-

hoods N(x,y) for these ten pictures are displayed in Figure

BUNDRAITLD . . i Tl 4 (g

4, with radius values 0, 1,and 2 represented by gray levels

20, 40, and 60, respectively. Figure 5 shows the results
of suppressing (= setting to zero) the points whose N(x,y)'s
2 are nonmaximal.

In these examples, since radii greater than 2 were not
allowed, we obtain a thick area of points having gray

level 60 (corresponding to radius 2) wherever a region is

AR g

more than 5 points wide. This could have been avoided by
allowing larger radii; we used only a few radii here in
order to avoid excessive computational cost in developing

and testing the SPAN programs. The computer time required

to produce each of the pictures in Figure 5 was 12 seconds

F : on a Univac 1108. 4




The results obtained for q=1 would be the same for any
q in the interval (.8, 1). This is because the largest
neighborhood size used was 5x5, and if two 5x5 upright
squares overlap by more than 80%, they must be identical.
If larger neighborhood sizes are allowed, the results be-
come more sensitive to the choice of q. Allowing g < 1
should reduce the sensitivity of the SPAN to noise.

The results of varying t are shown in Figure 6. (The
effects of changing p would be similar.) It is seen that
taking t = .6, rather than .85, yields thicker skeletons,

but is capable of detecting lower contrasts between regions.




5. Application of the SPAN to smoothing

Since each neighborhood N(x,y) is contained within one
of the regions R, we should be able to smooth the picture
without blurring the edges of the regions by replacing the
gray level at (x,y) by the average gray level measured over
N(x,y). An early discussion of smoothing by averaging over
regions of variable size, which could grow as long as they

did not cross over edges, was given by Roetling [15]. This

f approach should, in principle, yield optimal smoothings,
; since it averages over the entire region containing each
|

H point; but this requires that the picture be explicitly
3

1

segmented into the regions, which is a computationally

costly process. A simpler approach is to use a neighborhood

of each point, but to allow each neighborhood to be as

large as possible, as long as it does not go outside the
region containing that point -- i.e., to use the N(x,y)'s
: as neighborhoods. An unsuccessful attempt to automatically ﬁ
EJ determine an averaging neighborhood size at each point of a :
picture was reported in [11].

The results of smoothing the ten pictures of Figure 1 3
using the N(x,y)'s as averaging neighborhoods are shown in ﬁ
fﬂ Figure 7. For comparison purposes, the results of averaging ‘

over a 3x3 square neighborhood at every point are shown in %

Figure 8. It is seen that the 3x3 smoothings blur the re-
gion edges, while the SPAN smoothings do not. Note, how-

ever, that the SPAN smoothings do not smooth out the noise
near the region edges, where the N(x,y) neighborhoods have

zero radius.




6. Application of the SPAN to edge detection

A problem with most methods of edge detection is

that they make use of symmetrical edge detection operators,
and so cannot take full advantage of the uniformity of the
regions between which an edge is to be detected, if these

regions are of very different sizes. For example, suppose

that regions A and B have widths a and b, where a < b, and
that we detect edges by taking differences of averages com-
puted over neighborhoods of size c. If ¢ > a, our detector
g will be too big for region A, so that parts of the picture
: lying beyond A will be included in the A average. But if

c sa < b, our detector sees only part of region B, and

cannot take full advantage of B's uniformity. For a dis-

S i o e R i

cussion of this problem see [16], and compare [12].

Here again, an optimal approach would be to use the
regions themselves as averaging neighbothoods. (Once we
have extracted the regions, we know where their edges are;
but we still need to do the averaging in order to deter-

mine the strengths of these edges.) However, explicitiy 4

TR O = S

determining the regions is computationally costly. A
simpler idea is to use the maximal N(x,y)'s as averaging

neighborhoods. If P is a point where two such N(x,y)'s

touch, we can take the difference of averages over the
N(x,y)'s as the edge value at P. Note that P may be in-
f,;v terior to a region (e.g., if a region is rectangular, there
| will be many maximal N(x,y)'s inside it); but in such a
case the difference of averages will be close to zero. On

the other hand, if P is on an edge between two contrasting

!
%




regions, there should be maximal N(x,y)'s contained in the i
two regions and meeting at P, and the difference of their |

averages will be high. Thus the edge values computed in ?

this way should be high along region edges, and low or zero
elsewhere. (In the pictures shown below, edge values less
than 6 have been suphressed.)

The results of applying this edge detection scheme to

the pictures of Figure 1, using pairs of adjacent, non-

overlapping maximal N(x,y)'s, are shown in Figure 9. For
comparison, the output of a Roberts-like gradient

(max(|{p-s|, [g-r|) in the neighborhood gg) for the same

pictures is shown in Figure 10. The Roberts gradient gives
good results when the edges are sharp and the regions are

small, but for larger regions with blurred edges, the SPAN

edge detector gives better results.
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7. Discussion and conclusions

In this paper we have defined a technique for piece-
wise approximation of pictures, based on maximal neighbor-
hoods, that can be applied to pictures which are approxi-
mately piecewise constant. As the examples in Figure 1
show, several real-world classes of pictures can be treated
as piecewise constant for purposes of SPAN construction.

On the other hand, for a picture that contains a major gray
level ramp, the SPAN method breaks down, since it will
attempt to approximate the ramp by a staircase.

It should be possible, in principle, to generalize the
SPAN approach to a wider class of pictures, e.g., pictures
that are approximately piecewise linear, rather than piece-
wise constant, in gray level. Here, for each neighborhood
Nr(x,y), we would test the hypothesis that its gray level
population is a good fit to a ramp, say in the least
squares sense. The largest r for which this fit is
sufficiently good would define the neighborhood N(x,y),
and we could then find the maximal N(x,y)'s as above.

It should also be possible to generalize the SPAN to
pictures containing textured regions. Suppose that a re-
gion consists of small constant-value elements on a con-
stant value background. Then for small values of the radius
k in Section 4, we will obtain small maximal neighborhoods
contained in individual texture elements and spaces. As k
gets larger, the neighborhoods will overlap both texture

elements and background, so that Sk will become large and




the size Ilkl of the confidence interval will exceed the
threshold t. But as k gets still larger, Sk stops increas-
ing (as long as the neighborhood stays within the region),
while the 2k+1 in the denominator continues to increase, so
that |I,| may again drop below t. Thus if we consider only
k's that are large compared to the texture element size, we
should still be able to find maximal neighborhoods correspond-
ing to the textured regions.

The practical utility of the SPAN approach is somewhat
limited, at present, by its computational cost. This
limitation could be overcome if a suitable parallel process-
ing capability were available. 1In any case, the SPAN
approachis a useful conceptual contribution, as a generaliza-
tion of Blum's MAT concept to noisy, unsegmented pictures.
Like the MAT, it provides natural, concise approximations
to such pictures that can be used for purposes of encoding,

recognition, and description.
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Figure 1. Some examples of pictures that are
approximately piecewise constant.
Each picture is a 32x32 pixel array
having 64 possible gray leveis. The
noisy versions have had normally dis-
tributed noise added with a mean of
zero and a standard deviation of 4
gray levels.

a) Portion of a LANDSAT image of the
Monterey, California area; b) Noisy
version of (a); c) White blood cell;
d) Noisy version of (c); e) Chromo-
some; f) Noisy version of (e);

g) Disk; h) Noisy version of (g);

iz ?;;haped object; j) Noisy version
) ‘
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Figure 2.

Figure 3.
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A simple object in a digital picture and
its MAT, based on "disks" that are
diagonally oriented squares. Points which
are centers of maximal squares are in-
dicated by integers that give the radii of
these squares; the other points of the
object are indicated by dots.

. 0
000
e 2. 00 00
000
. 0
(a) (b)

Sensitivity of the MAT to noise. a) The
MAT of a diagonally oriented square is a
single point at the center of the square.
b) If the center point of the square is
deleted, the MAT of what remains consists
of all the points, since for any of the
remaining points, the maximal "disk" now
has radius zero.
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Figure 4.

Figure 5.
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Radii of the neighborhoods N(x,y) for the pictures .
in Figure 1, using p = .95 and t = .85. Only the
values 0, 1, and 2 were allowed; they are repre-

sented by gray levels 20, 40, and 60, respectively.
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Results of suppressing nonmaximal neighborhoods
for the pictures in Figure 1. The gray level at
(x,y) is set to zero if the neighborhood N(x,y)
is contained in a larger neighborhood N(u,v);
otherwise, the same gray levels as in Figure 4
are used. }
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a)

b)

Figure 6.

lll c) II' e) B
a @

Results of taking t = .6, rather than
.85, in constructing SPANs for Figures
la, ¢, e. Parts a, ¢, e show the
radii, and parts b, d, f the results
of suppressing nonmaxima.

a)- c). e) 9). f).
Dl o] oM n W o |

Figure 7.

Figure 8.

Rgsu1ts of smoothing the pictures in
Fxgure 1 by averaging over the
neighborhoods N(x,y).

B % " | N
. f) N h). J).

Results of smoothing the same pictures
by averaging over a 3x3 neighborhood
of each point.




TSN ey T 5 <M YA VA AT T

AV S M TR

a). c). e).
b). d). f).

Figure. 9. Results of detecting edges on the
pictures in Figure 1 using diff-
erences of averages over the
maximal neighborhoods N(x,y).
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Figure 10. Results of detecting edges on the
same pictures using a Roberts-like
gradient operator.
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